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Collective-field method for a U(N)-invariant model in the 
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Ruder BoSkoviC, Institute, 41001 Zagreb, PO Box 1016, Croatia, Yugoslavia 

Received 17 July 1990 

Abstract. We use the collective-field method to discuss the weak- and stcongaupling 
phases of the one-plaquette U(N)-invariant model. In both phases we obtain a unified 
description in terms of collective fields and their correlations. The ground-state energy 
including the next-to-leading-order term is finite awing to explicit cancellation of 
divergences except at the critical point of the phase transition. 

1. Introduction 

The large-N approximation to quantum field theories can be efficiently extracted using 
the collective-field method. Gross and Witten [ I ]  applied the 1,"-expansion method 
to the two-dimensional U( N )  gauge-invariant lattice field theory. They discovered a 

In this paper we apply the collective-field method to the one-plaquette U(N) 
gauge-invariant model including divergent terms in the Hamiltonian which are inherent 
to the collective-field formulation [2,3]. We show that the divergences in the collective 
Hamiltonian are cancelled by the divergent contributions of zero-point collective 
fluctuations from the next-to-leading order in the 1 / N  expansion. The remaining term 
represents the finite correction to the ground-state energy. In terms of collective fields 
we obtain a unified description of both phases. It is only the semiclassical solution &, 
and the correlation that turn out to be different functions in different regimes of the 
coupling constant. In the vicinity of the critical value of the coupling constant the 
energy becomes divergent. 

We show that in the strong-coupling sector, at least for the chosen cases, the 
collective-field method applied to lattice gauge theories seems to be superior to the 
summation method of fermionic orbitals used by Brezin, Itzykson, Parisi and Zuber 
(BIPZ) [4]. 

!hird-nrder phase tr2.sition. 

2. The collective-field Hamiltonian 

The one-plaquette Kogut-Susskind Hamiltonian [5] with U ( N )  gauge symmetry in 
2 +  1 dimensions is given by 
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where g is the coupling constant and a is the lattice spacing. The unitary matrices 
U(i) are the basic degrees of freedom and the electric field E " ( i )  is expressed by the 
conjugate variables in the vertex i of the plaquette. The lattice action S is a real class 
function defined on the group U( N ) .  For example, the action S can have the following 
forms: 
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-[Tr u(l)u(2)u(3)U(4)+HC] ( 2 0 )  
S =  TrX2 (26) 

Tr tanh2(,y/2) ( 2 c )  

(3) 

I 
where 

eiy = u(I)U(~)U(~)U(~). 
The corresponding models are known as the Wilson [5], Manton [6] and Jurkiewicz- 

Zalewski [7] actions. We shall investigate the ground-state energy in the large-N limit. 
A suitable method for extracting leading terms is the collective-field method. We shall 
therefore formulate the Hamiltonian in terms of collective fields, as was done in [2] 
for the leading term in the 1/ N expansion. In addition, we shall include the next-to- 
leading term in the collective-field Hamiltonian. 

For the collective field we use commuting gauge-invariant 'loop-space' operators 

w. =Trl[U(l)U(2)U(3)U(4)1"1 (4) 
where n is an integer. 

Hamiltonian is 

Hkj .=x  E " ( i ) E " ( i )  

With use of the standard procedure of Hermiticization, the kinetic part of the 

*.i 

-"- a (nNW. + n  sgn n'W,,W,_,, 
a w. " '  

where 

n(n, n ' )  = -nn'W,,+,. 

and 

The last term in (5 )  is divergent, and we shall show how to cope with such divergences. 
In the large-N it is convenient to work with the continuous version of the collective 

field (4) by using a fourier transform: 

" 1  
-m 21r 

+(U)= -e'""W, u E ( - T ,  T ) .  
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and the kinetic part of the Hamiltonian (5)  

-"' f du +(u)J, (cot 9) 
2a I T = c  

(9) 

where 

The collective field + ( U )  obeys the normalization condition 

du$( u) = Tr U = hi. (10) I 
Owing to the functional identity 

(this can be proved using arguments similar to those in [SI), we can write Hki. as the 
local functional: 

duJm7r+(m)J,7r+-i 7r2 $ ' ( u ) d u - & ( I  +(u)du) ')  
a 6 

-"'f 2a d v  $(U)&( cot +) d=" 
The lattice action S can be written in the general form 

n 

S = I-, +(s)S(o) du 

where 

S ( v ) =  U reo; 2 tan2 - 

for the Wilson, Manton and Jurkiewicz-Zalewski actions, respectively. 
The complete Hamiltonian is 

duJcm$(u)Jrn+- 7r2N' j $'(U) du-Nz 24 (I $(U) du)3) 
a 6 

We shall perform the large-hi expansion with the standard condition 

g 2 N  = A =constant. 
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From now on we shall extract N from the collective field, so that the normalization 
condition (10) is 
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+ ( u ) d u = l .  (16) 

With this in mind, we can write the Hamiltonian (15) so that its explicit N dependence 
is 

J :- 

From the structure of the Hamiltonian we assume a Gaussian ansatz for the vacuum 
wavefunctional [9]: 

@[+I = exp -- d u  du'(+(s) -&,(u))G-'(u, u')(+(u') - &(U')) (18) 

In our variational approach, two important variables are the ground-state mean 

( :21 
value of the field 

(@I+(u)l@)= +,(U)  (19) 

(@l+(~)+(~ ' ) l@)= + d ~ ) + o ( 4 +  G(c3 U' )  (20)  

and the correlation G(u, U') 

where G and G-l are related by 

G( U, U ' )  G-'(u', U") du '  = 6( U - U"). (21) I 
The ground-state energy given in terms of +,,(U) and G(u, U ' )  is 

AN' 
E = ( @ I H I @ ) = y  T 2 A N 2  I +:(U)  d + + G  N 2  I +,(u)S(u) du-- 1Za 

+=I a 2a 

In order to find the extreme of the energy functional, we shall find functional 
variations with respect to +,(U) and G(u,u').  We obtain two coupled nonlinear 
equations: 

,T 'AN~ N' ,T'AN~ A 
G(u, U )  -- J,, Cot - +:(u)+-s(u)+- a ha a 2a 



A U(N)-invariant model in the large-N limit 357 

where p, and p2 are Lagrangian multipliers owing to the 'normalization' conditions 

+,,(u)du=l (24)  

duG(u,  U') = du '  G(u, U') = O  

and the energy functional (22 )  can be written as 

J J 

The functional identity [8] (taken in the sense of principal part) 

U-U' U-U" U ' - u  
cot - +cot ~ cot - +cot- cot - cot ~ 

2 2 2 2 2 2 

= 4?r2S(u- u')S(u - U") - 1 (27)  

can be extended by mapping u+f(u),  where f(u) is a continuous real function 
satisfying -nsf (u)s  T. Using the identity (27) we obtain 

and the condition on f (U) arsises from 

f ( ' ' )  - f ( ' )  =constant, (29) 

From this condition we may conclude that 4,,(u)f'(u) =constant, owing to the property 
of the cotangent kernel [IO]. Therefore, choosingf(i?r) = i ? r ,  we obtain 

f-: d o ( u ) ( f ' ( d ) 2  d o  Cot 2 

2Tt 
7 f ( U ) = - T + -  (30 )  
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where 
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and 

71 
G ~ ~ ( u ~ u ' ) = - 2 ~ n l s i n ~ ~ ~ ( u ) - t ( u , ) ) l .  I 1  I (32 )  

Inserting ( 3 2 )  into the expression for the ground-state energy (22),  we obtain 

The last term is a correction of order l / N 2  with respect to the leading term: 

Inserting the expression for G-'(u,  U') into (23n) ,  which determines &(U) ,  we obtain 

Generally, this equation can be exactly solved only in a few cases, as we shall discuss 
later. Using the 1/N expansion we can solve (35)  approximately. The term with the 
derivatives is suppressed by 1 / N 2  with respect to the leading term, so that the 
approximate solution in the leading order is 

This is sufficient to obtain the ground-state energy and its correction. In fact, the 
collective field &u) is the extrema1 point of the leading term in the energy 
functional (26) .  

From (236)  we obtain the condition 

~ o ( u ) ~ ~ G ~ ' ( u , u ' ) I ~ ~ ~ ~ = O  W u ' .  (37 )  

From this equation we may conclude that both qh,(u) and G-'(u,  U ' )  are solutions but 
only for &(+T) = &(-r) # 0; otherwise, the correction E,,,, in (34) is not finite. This 
is a strong-coupling phase and therefore &,(u)#O on the whole interval. Now we 
shall show that it is possible to construct an additional solution for and G. We 
shall start from another functional identity (taken in the sense of principal part) [SI: 

1 1 
l +  1 

f(u) -f(4 f ( u )  -f(d f (d -f(u) f ( U ' " ( ~ ' 7  
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wheref(u)  again satisfies - , rsf(u)s T. Further treatment is close to the one-matrix 
problem [ I  11. Multiplying and integrating (38), we obtain 

The condition for G-' in (236) can be satisfied if 

c, and c2 being constants. Using the properties of the Hilbert transform [lo], we find 
that 

f (u)=-f (uo)cos- t (u)  U ~ S , ~ , $ ~ ( U ) = O  i f l u l > u o  (41) T 

where 

and T=t(uu) .  

Then G-' is given by 

G-'(U, U ' )  = -2 In 

(42) 

(43) 

Inserting G-' from (43) into (26), we obtain for the ground-state energy .=-I T ' A N ~  $:(u)du+-j  N2 @u(u)S(u)du--  AN' 
3a Ao 12a 

and hence we have 

The mean value of the collective field 40(u) is determined from (23a) as 

Using the same I /  N arguments as before, we obtain the leading approximate solution 

1 
& u ) = ~ & = m .  (47) 

From (236) for G and G-' ,  we obtain the condition 

$~u)J, ,G- '(u,  U' )  l":",,=o W U , .  
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From this condition we may conclude that both &(U) and G-'(u, U') are solutions 
but only for +o(+u,) = $,,( -uo) = 0. This is a weak-coupling phase. 

I AndriC and V Bardek 

3. The wavefunctional 

We have assumed the Gaussian form of the wavefunctional. We shall show how to 
obiain its detaiied forrl. ;acoz,arr of ik2 iiaiisfoiiiiaiioii i(j io::eik<e va~a::zs is 
defined by the Hermiticity condition [3] 

8 In J 
8 W" " '  
-= - xn-yn, n ' ) o ( n ' ) .  

In terms of the collective field 

In J =- d u  du '  $(u) In( sin'?) +(d) NZ 2 s 
(49) 

the Schrodinger wavefunctional is given as 

'U[$] =e-"/2""'9[$] (51) 

where @[+I is the Gaussian ansatz (18). 
Collecting the above equations, we obtain the Schrodinger wavefunctional (51) as 

'U[+] = exp[ -: I I d u  du '  $,,(u)G-'(u, u ' ) ~ ( u ' )  

It is easy to see that this wavefunctional is not singular for U = U' owing to the Jacobian 
(50) which cancels the divergences. This is a unified treatment in the sense of its validity 
for both phases. 

4. Examples 

To show the efficiency of the collective-field method, we shall treat both the Jurkiewicz- 
Zalewski and the Manton actions. 

(i) The action S,=(u) = 2  tan2 u / 2 .  Owing to this action, the model has only one 
phase, the weak one. The corresponding equation for +,,(U) from (46) is 

This equation can be exactly solved as 
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where A = [ 2 + ( A 2 / 1 6 N 2 ) ] ' / 2 ,  A = g 2 N  and the corresponding value for w is 

A N' 1 
p = (T-i) + NA. 

The corresponding ground-state energy is 

E = Eo+ K o r r  

N2 N 2  

'- 4 2A 

E,,,,= -+-. 

( 5 5 )  E - -A+-  

A A 2  
8 64A 

This is also the exact result for finite N, which can be shown by summing 'fermionic' 
o:bi!z!s csixg the o:oz [41 -ethod. 

(ii) The Manton action .S(r)=r2. There are two phases [12]. In the weak phase 
A S A ,  = r'/&, the exact solution of (46)  is 

+: (U)=  (56)  

N' AN2 
E : = x - T  

g 2 N  g 2  
(57a) 

(576) 

Summation of the orbitals shows that this result is in complete agreement with the 
WKB treatment. 

Ero,,,= -E+--- - 
12T 12 24[amy;2du 

A 
1 1 '  

-_ - 
I L  

In the strong-coupling phase A 2 r2/&, the approximate solution of (46) is 

( 5 8 )  
g2 u2 

and 

( A 2 -  1 ) 3 / z + - - -  
4 12 

11' 
~ ; , = p j 2  -- ( 6 A A 2  

E,,,, is given by 

T r 2 A  A 
2 & r ( A 2 - 1 ) ' / 2  24a2A 3T '12 ( 5 9 )  +--- 1 

E,,,,= - 

where T = 2 f i r  sin-' 1 / A  and A is defined by a transcendental equation arising from 
the normalization condition (24):  

(6Oj 

The correction is finite except for A = A , ,  i.e. A = 1 .  It will be very interesting to 
investigate how to obtain this correction from the BIPZ method [4], taking into account 
complications arising from the boundary condition on wavefunctions at U = +r. 

, > 2  . ' ' " t A 2 s i n - l - -  1 J Z  
( A - - I J  -A-. 

A T  
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